Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.14.22281081

ABSTRACT

The potential utility of wastewater-based epidemiology as an early warning tool has been explored widely across the globe during the current COVID-19 pandemic. Methods to detect the presence of SARS-CoV-2 RNA in wastewater were developed early in the pandemic, and extensive work has been conducted to evaluate the relationship between viral concentration and COVID-19 case numbers at the catchment areas of sewage treatment works (STWs) over time. However, no attempt has been made to develop a model that predicts wastewater concentration at fine spatio-temporal resolutions covering an entire country, a necessary step towards using wastewater monitoring for the early detection of local outbreaks. We consider weekly averages of flow-normalised viral concentration, reported as the number of SARS-CoV-2 N1 gene copies per litre (gc/L) of wastewater available at 303 STWs over the period between 1 June 2021 and 30 March 2022. We specify a spatially continuous statistical model that quantifies the relationship between weekly viral concentration and a collection of covariates covering socio-demographics, land cover and virus-associated genomic characteristics at STW catchment areas while accounting for spatial and temporal correlation. We evaluate the models predictive performance at the catchment level through 10-fold cross-validation. We predict the weekly viral concentration at the population-weighted centroid of the 32,844 lower super output areas (LSOAs) in England, then aggregate these LSOA predictions to the Lower Tier Local Authority level (LTLA), a geography that is more relevant to public health policy-making. We also use the model outputs to quantify the probability of local changes of direction (increases or decreases) in viral concentration over short periods (e.g. two consecutive weeks). The proposed statistical framework is able to predict SARS-CoV-2 viral concentration in wastewater at high spatio-temporal resolution across England. Additionally, the probabilistic quantification of local changes can be used as an early warning tool for public health surveillance.


Subject(s)
COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-770963.v1

ABSTRACT

Accurate surveillance of the COVID-19 pandemic can be weakened by under-reporting of cases, particularly due to asymptomatic or pre-symptomatic infections, resulting in bias. Quantification of SARS-CoV-2 RNA in wastewater (WW) can be used to infer infection prevalence, but uncertainty in sensitivity and considerable variability has meant that accurate measurement remains elusive. Data from 44 sewage sites in England, covering 31% of the population, shows that SARS-CoV-2 prevalence is estimated to within 1.1% of estimates from representative prevalence surveys (with 95% confidence). Using machine learning and phenomenological models, differences between sampled sites, particularly the WW flow rate, influence prevalence estimation and require careful interpretation. SARS-CoV-2 signals in WW appear 4–5 days earlier in comparison to clinical testing data but are coincident with prevalence surveys suggesting that WW surveillance can be a leading indicator for asymptomatic viral infections. Wastewater-based epidemiology complements and strengthens traditional surveillance, with significant implications for public health.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.25.21254231

ABSTRACT

Clinical testing of children in schools is challenging, with economic implications limiting its frequent use as a monitoring tool of the risks assumed by children and staff during the COVID-19 pandemic. Here, a wastewater based epidemiology approach has been used to monitor 16 schools (10 primary, 5 secondary and 1 post-16 and further education for a total of 17 sites) in England. A total of 296 samples over 9 weeks have been analysed for N1 and E genes using qPCR methods. Of the samples returned, 47.3% were positive for one or both genes with a frequency of detection in line with the respective community. WBE offers a promising low cost, non-invasive approach for supplementing clinical testing and can offer longitudinal insights that are impractical with traditional clinical testing.


Subject(s)
COVID-19
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.01991v2

ABSTRACT

Coronavirus COVID-19 spreads through the population mostly based on social contact. To gauge the potential for widespread contagion, to cope with associated uncertainty and to inform its mitigation, more accurate and robust modelling is centrally important for policy making. We provide a flexible modelling approach that increases the accuracy with which insights can be made. We use this to analyse different scenarios relevant to the COVID-19 situation in the UK. We present a stochastic model that captures the inherently probabilistic nature of contagion between population members. The computational nature of our model means that spatial constraints (e.g., communities and regions), the susceptibility of different age groups and other factors such as medical pre-histories can be incorporated with ease. We analyse different possible scenarios of the COVID-19 situation in the UK. Our model is robust to small changes in the parameters and is flexible in being able to deal with different scenarios. This approach goes beyond the convention of representing the spread of an epidemic through a fixed cycle of susceptibility, infection and recovery (SIR). It is important to emphasise that standard SIR-type models, unlike our model, are not flexible enough and are also not stochastic and hence should be used with extreme caution. Our model allows both heterogeneity and inherent uncertainty to be incorporated. Due to the scarcity of verified data, we draw insights by calibrating our model using parameters from other relevant sources, including agreement on average (mean field) with parameters in SIR-based models.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL